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• Currents: 

• Ideal plasma surface currents (for flat equilibrium current profile)  

 

 

 

• Resistive plasma “surface” currents 

 

 

 

• Eddy currents in the wall   

Fig. 6. Normalized growth rate of the rotating 

mode vs. edge safety factor for different 

plasma velocities. 

Fig. 5. Normalized growth rate of the locked 

mode vs. edge safety factor for the different 

thickness of the resistive layer. 
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In contrast with results in [5, 6] the model predicts increase of the 

perturbed plasma edge current for steeper profiles of the equilibrium 

current. For locked modes it becomes larger with a more distant wall, 

colder plasma and thinner resistive layer. Plasma rotation provides 

mode stabilization, to address its influence on the perturbed edge 

current dynamics further analysis is needed. Our consideration is free 

from the assumption that the mass density has a jump at the plasma 

boundary, which is the main reason leading to the existence of the 

surface currents within the ideal MHD. 
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Results 

Introduction 

Major disruptions and VDEs result in halo and eddy currents flowing in the 

conducting structures surrounding plasma [1–4]. These currents can produce 

unacceptable forces on vacuum vessel and in-vessel components, and their 

careful evaluation is necessary. Recent analytical theory [5, 6] predicts that 

the ideal plasma surface current can contribute to the halo, especially when 

the plasma boundary almost coincides with the rational surface. Here we 

speculate that such a particular case must not be considered in the frame of 

the ideal MHD, because it leads to a singularity for the plasma displacement. 

Treating the cold post-disruption plasma edge as a resistive layer we derive a 

dispersion relation for the growth rate and mode frequency, expressions for 

the resistive plasma “surface” current and eddy currents in the wall. Our 

approach has some similarities with that in [7, 8]. 

• Calculation of the surface/edge currents after the thermal quench and their 

contribution to the halo currents during the current quench 

• Ideal and resistive plasmas are considered 

• Cylindrical approximation 

• Ideal plasma – this equation must not be used at the vicinity of the rational surface 

since in this case the plasma displacement  

 

Formulation of the problem 

Fig. 1. Normalized growth rate, ideal plasma 

surface and resistive wall eddy currents vs. 

edge safety factor for flat current profile. 

Fig. 2. Normalized growth rate of the 

locked mode vs. edge safety factor for 

different current profiles. 

bdww  0

Fig. 3. Normalized growth rate of the locked 

mode vs. edge safety factor for different wall 

positions. 

Fig. 4. Normalized growth rate of the locked 

mode vs. edge safety factor for different 

ratios of the wall and resistive layer times. 
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• Resistive layer at the vicinity of the rational surface  
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• The resistive wall  
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• For parabolic distribution of the equilibrium current [9]   


