

Patric Muggli AWAKE collaboration Max Planck Institute for Physics Munich muggli@mpp.mpg.de https://www.mpp.mpg.de/~muggli © P. Mugli

P. Muggli, FuseNet2023, 08/24/2023

Some of the largest and most complex (and most expensive) scientific instruments ever built!

♦All use radio frequency (RF) technology to accelerate particles

P. Muggli, FuseNet2023, 08/24/2023

2/22

The future is ...

Some of the largest and most complex (and most expensive) scientific instruments ever built!

All use radio frequency (RF) technology to accelerate particles

P. Muggli, FuseNet2023, 08/24/2023

4/22

"The 2.4-mile circumference RHIC ring is large enough to be seen from space"

P. Muggli, FuseNet2023, 08/24/2023

4/22

ACCELERATING FIELDS

♦Gradient/field limit in (warm) RF structures: <1GV/m</p> ♦RF break down (plasma!!) and pulsed heating fatigue Accelerating field on axis, damage on the surface ♦ Material limit, metals in the GHz freq. range (Cu, Mo, etc.) ♦Does not (seem to) increase with increasing frequency

Field

Maximum

20

Pulsed heating fatigue Pritzkau, PRSTAB 5, 112002 (2002)

100

5/22

Gradient/field limit in (warm) RF structures: <1GV/m</p> Pulsed heating fatigue Pritzkau, PRSTAB 5, 112002 (2002) ♦RF break down (plasma!!) and pulsed heating fatigue ♦Accelerating field on **RF-accelerators:** ♦ Material limit, metals Accelerating field limited to <1GV/m ♦Does not (seem to) ir low break-down rate 10 by metal damage: rf Breakdow -RF-breakdown Trapping -pulsed heating AT=240K AT=120K Copper: low damage threshold AT=40K 0.1 e⁻ Bunch Clo Long RF pulses (high Q) SLC JLCATE NLC CERNSLAC CLIC (lower limit 0.01 **RF Dreak down** Braun, PRL 90, 224801 (2003) 22 24 26 28 30 32 34 Frequency (GHz) P. Muggli, FuseNet2023, 08/24/2023

"The 2.4-mile circumference RHIC ring is large enough to be seen from space"

Search for a new technology to accelerate particles at high-gradient (>1GeV/m) and reduce the size and cost of a future linear e⁻/e⁺ collider or of an x-ray FEL ... and (many) low energy applications

Some of the largest and most complex (and most expensive) scientific instruments ever built!

♦All use radio frequency (RF) technology to accelerate particles

P. Muggli, FuseNet2023, 08/24/2023

5/22

MAX-PLANCK-INSTITUT FÜR PHYSIK

P. Muggli, FuseNet2023, 08/24/2023

RELATIVISTIC PARTICLE BUNCH MEETS PLASMA

♦ Relativistic Bunch ⇔ Radial Space Charge Field ⇔ Plasma Screening
 ⇔ Azimuthal Magnetic Field ⇔ Plasma Return Current

 \Rightarrow High Frequency Regime \Leftrightarrow Time $\sim 1/\omega_{pe} \Leftrightarrow$ Space $\sim c/\omega_{pe}=1/k_{pe}, \lambda_{pe}=2\pi/k_{pe}, v_b\sim c, \gamma >>1, (\omega_{pi})$

 \diamond Screening \Leftrightarrow Plasma Wakefields (Langmuir Wave, E₇) \Leftrightarrow Self-Modulation and Hosing Instabilities \Leftrightarrow Accelerators

♦Return Current ⇔ Current Filamentation Instability (~Weibel Instability), Generation of Magnetic Fields ⇔ Astrophysics

MAX-PLANCK-INSTITUT FÜR PHYSIK

P. Muggli, FuseNet2023, 08/24/2023

C P. Muggli

MAX-PLANCK-INSTITUT

 c/ω_{pe}

Plasma e- angular frequency

Plasma skin depth

7/22

P. Muggli, FuseNet2023, 08/24/2023

PLASMA WAKEFIELDS

bunch

Short driver: electron bunch, laser pulse

Kumar et al., PRL 104, 255003 (2010)

P. Muggli, FuseNet2023, 08/24/2023

MAX-PLANCK-INSTITUT FÜR PHYSIK

P. Muggli, FuseNet2023, 08/24/2023

AWAKE @ CERN

P. Muggli, FuseNet2023, 08/24/2023

P. Muggli, FuseNet2023, 08/24/2023

PLASMA SOURCES

Oz, Nucl. Instr. Meth. Phys. Res. A 740(11), 197 (2014) Plyushchev, J. Phys. D: Applied Physics, 51(2), 025203 (2017)

 $\diamond Very$ uniform density uniformity: $\Delta n_e/n_{e0}{<}0.5\%$ © P. Muggli

\diamond Discharge plasma source

\diamond Flexibility:

- ♦ Plasma length: 3.5, 6.5, 10m
- \diamond Density 0.1-20x10¹⁴ cm⁻³
- \diamond Gas-ion mass: He, Ar, Xe (ω_{pi})
- ♦ Access to plasma light

12/22

P. Muggli, FuseNet2023, 08/24/2023

© P. Muggli AWAKE, Phys. Rev. Lett. 122, 054802 (2019) M. Turner et al., Phys. Rev. Lett. 122, 054801 (2019) uggli, FuseNet2023, 08/24/2023

© P. Muggli AWAKE, Phys. Rev. Lett. 122, 054802 (2019) M. Turner et al., Phys. Rev. Lett. 122, 054801 (2019) uggli, FuseNet2023, 08/24/2023

© P. Muggli AWAKE, Phys. Rev. Lett. 122, 054802 (2019) M. Turner et al., Phys. Rev. Lett. 122, 054801 (2019) uggli, FuseNet2023, 08/24/2023

AWAKE, Nature 561, 363 (2018)

P. Muggli, FuseNet2023, 08/24/2023

P. Muggli, FuseNet2023, 08/24/2023

P. Muggli, FuseNet2023, 08/24/2023

P. Muggli, FuseNet2023, 08/24/2023

P. Muggli, FuseNet2023, 08/24/2023

© P. Muggli

e-BUNCH SEEDING OF SM

Abrupt start of the plasma (<<1/ ω_{pe}) to seeds wakefields

© P. Muggli

P. Muggli, FuseNet2023, 08/24/2023

17/22

Plasma

SSM

Plasma

SSM

A-M Bachmann

80

60

40

t [ps]

20

-20

0

P. Muggli, FuseNet2023, 08/24/2023

17/22

© P. Muggli

-4

100

a)

x [mm]0 -2

2

e-BUNCH SEEDING OF SM

P. Muggli, FuseNet2023, 08/24/2023

e-BUNCH SEEDING OF SM

♦SM is reproducible (summed image)

 \diamond SM is seeded by the (wakefields driven by the) e⁻ bunch, e-SSM

L. Verra, (AWAKE Coll.), Phys. Rev. Lett. 129, 024802 (2022)

P. Muggli, FuseNet2023, 08/24/2023

17/22

$\diamond \text{e-bunch}$ seeding of SM

 $\diamond e^{-}$ and p^{+} aligned ...

HOSING

*... axi-symmetric SM

P. Muggli, FuseNet2023, 08/24/2023

$\diamond \text{e-bunch}$ seeding of SM

 $\diamond e^{-}$ and p^{+} aligned ...

... axi-symmetric SM

♦... non-axi-symmetric hosing (mis-alignment plane) \diamond ... and SM in the perpendicular plane ("no misalignment" plane)

18/22

HOSING

P. Muggli, FuseNet2023, 08/24/2023

\diamond e-bunch seeding of SM

HOSING

1.5

1.0

0.1

-1.0

AWAKE

♦Hosing

♦ Centroid oscillation

© P. Muggli

P. Muggli, FuseNet2023, 08/24/2023

\diamond e-bunch seeding of SM

 $\diamond e^{-}$ and p^{+} aligned ...

HOSING

P. Muggli, FuseNet2023, 08/24/2023

AWAKE

\diamond e-bunch seeding of SM

♦ Hosing could deteriorate, limit the acceleration process...

P. Muggli, FuseNet2023, 08/24/2023

MAX-PLANCK-INSTITUT FÜR PHYSIK 19/22

P. Muggli, FuseNet2023, 08/24/2023

CURRENT FILAMENTATION INSTABILITY

 \diamond Wakefields: σ_{r0} <c/ ω_{pe}

\diamond Beam Transverse Current Filamentation Instability (CFI): σ_{r0} >>c/ ω_{pe}

 \diamond Return current inside the bunch

P. Muggli, FuseNet2023, 08/24/2023

CURRENT FILAMENTATION INSTABILITY

 \diamond Wakefields: σ_{r0} < c/ ω_{pe}

 \diamond Beam Transverse Current Filamentation Instability (CFI): σ_{r0} >>c/ ω_{pe}

 \diamond Return current inside the bunch

↔Non-uniformities in return currents ↔Opposite currents repel each other ↔Beam filamentation at the c/ω_{pe} scale ↔Growth rate:

$$\Gamma = \sqrt{rac{n_{b0}/n_{e0}}{\gamma}}\omega_{pe}$$

Core-collapse, or type II supernovas, are caused by the implosion of massive stars like red supergiants. (Supplied: ESA/hubble/L Colcodo)

Astrophysics: generation of magnetic fields in the universe?

♦ Collision: neutral, expanding supernova plasma – interstellar plasma
 ♦ CFI :

♦Generates magnetic fields

- ♦ Converts kinetic energy of the expanding plasma into B-field energy and plasma kinetic energy
- \diamond Evolution: filaments -> coalescence -> shock formation

P. Muggli, FuseNet2023, 08/24/2023

9/22

CURRENT FILAMENTATION INSTABILITY

 \diamond Wakefields: σ_{r0} <c/ ω_{pe}

 \diamond Beam Transverse Current Filamentation Instability (CFI): σ_{r0} >>c/ ω_{pe}

 \diamond Return current inside the bunch

↔Non-uniformities in return currents ↔Opposite currents repel each other ↔Beam filamentation at the c/ω_{pe} scale ↔Growth rate:

$$\Gamma = \sqrt{rac{n_{b0}/n_{e0}}{\gamma}}\omega_{pe}$$

Core-collapse, or type II supernovas, are caused by the implosion of massive stars like red supergiants. (Supplied ESA/hubble/L Calcada)

Astrophysics: generation of magnetic fields in the universe?

♦ Collision: neutral, expanding supernova plasma – interstellar plasma
 ♦ CFI :

♦Generates magnetic fields

- ♦ Converts kinetic energy of the expanding plasma into B-field energy and plasma kinetic energy
- Evolution: filaments -> coalescence -> shock formation

C P. Muggli

Shukla, J. Plasma Phys. 84(3) 905840302 (2018) Allen, Phys. Rev. Lett. 109, 185007 (2012)

19/22

P. Muggli, FuseNet2023, 08/24/2023

SCALABLE PLASMA SOURCE

- ♦Laser ionization does not scale to long plasma lengths (100m-1km): laser pulse energy depletion!

 \diamond Beam-plasma interaction

 \diamond AWAKE:

- \diamond Plasma wakefield acceleration of e⁻ bunch for application to particle physics (200GeV, 5TeV)
- \diamond Requires self-modulation (SM) of the p⁺ bunch to reach high gradient, ~1GeV/m
- \diamond Avoid hosing instability (HI), study HI
- \Rightarrow Avoid current filamentation instability (CFI): σ_r <c/ ω_{pe}

T. Nechaeva

MAX-PLANCK-INSTITUT FÜR PHYSIK FÜR PHYSIK

P. Muggli, FuseNet2023, 08/24/2023

♦Beam-plasma interaction

♦AWAKE:

- \diamond Plasma wakefield acceleration of e⁻ bunch for application to particle physics (200GeV, 5TeV)
- \diamond Requires self-modulation (SM) of the p⁺ bunch to reach high gradient, ~1GeV/m
- ♦ Requires seeding/control of SM process: RIF, e⁻ bunch
- ♦Avoid hosing instability (HI), study HI
- \diamond Avoid current filamentation instability (CFI): $\sigma_r < c/\omega_{pe}$
- ♦ Study astrophysics in the laboratory, generation of magnetic fields
 - \diamond Study CFI: $\sigma_r > c/\omega_{pe}$
 - ↔ Alternate SM/CFI with $σ_{r=}$ ~1.6c/ $ω_{pe}$

P. Muggli, FuseNet2023, 08/24/2023

 \diamond Beam-plasma interaction

 \diamond AWAKE:

- \diamond Plasma wakefield acceleration of e⁻ bunch for application to particle physics (200GeV, 5TeV)
- $\diamond Requires$ self-modulation (SM) of the p⁺ bunch to reach high gradient, ~1GeV/m
- \diamond Requires seeding/control of SM process: RIF, e⁻ bunch
- \diamond Avoid hosing instability (HI), study HI
- \diamond Avoid current filamentation instability (CFI): σ_r <c/ ω_{pe}
- Study astrophysics in the laboratory, generation of magnetic fields
 - \diamond Study CFI: $\sigma_r > c/\omega_{pe}$
 - \diamond Alternate SM/CFI with $\sigma_{r\text{=}}\text{~~}1.6\text{c}/\omega_{\text{pe}}$
- ♦ Clear plan towards reaching high-energy gain
 - \diamond Possible particle physics experiments in early 2030's

Muggli (AWAKE Coll.), J. of Phys.: Conf. Series1596, 012008 (2020).

22/22

P. Muggli, FuseNet2023, 08/24/2023

♦Beam-plasma interaction

 \diamond AWAKE:

- \diamond Plasma wakefield acceleration of e⁻ bunch for application to particle physics (200GeV, 5TeV)
- \diamond Requires self-modulation (SM) of the p⁺ bunch to reach high gradient, ~1GeV/m
- \diamond Requires seeding/control of SM process: RIF, e⁻ bunch
- \diamond Avoid hosing instability (HI), study HI
- \diamond Avoid current filamentation instability (CFI): $\sigma_r < c/\omega_{pe}$

♦ Study astrophysics in the laboratory, generation of magnetic fields

- \diamond Study CFI: $\sigma_r > c/\omega_{pe}$
- \diamond Alternate SM/CFI with $\sigma_{\text{r=}}\text{--}1.6\text{c}/\omega_{\text{pe}}$

\diamond Clear plan towards reaching high-energy gain

- \diamond Possible particle physics experiments in early 2030's
- \diamond Develop long plasma sources: L>100m, n_{e0} = 10^{14} \text{--} 10^{15} \text{cm}^{\text{--}3}
 - \diamond Discharge, helicon plasma source

Muggli (AWAKE Coll.), J. of Phys.: Conf. Series1596, 012008 (2020).

L=10n

water-coole field coils

P. Muggli, FuseNet2023, 08/24/2023

MAX-PLANCK-INSTITUT

L. Verra

P. Muggli, FuseNet2023, 08/24/2023

22/22

Thank you to my collaborators

Thank you!

http://www.mpp.mpg.de/~muggli muggli@mpp.mpg.de