

Alternative divertors for improved tokamak operation

Christian Theiler Swiss Plasma Center (SPC) - EPFL

FuseNet PhD event EPFL, 23.8.2023

Swiss Plasma Center

EPFL Complexity and importance of the boundary plasma²

Swiss Plasma Center → Wall heat flux \leq 10MW/m²; T_e \lesssim 5 eV; Sufficient helium pumping + maintaining high energy confinement → Exhaust challenge

Swiss Plasma

Center

Swiss Plasma Center

Plasma Center

- Unclear if safe plasma exhaust achievable in conventional divertor while simultaneously assuring sufficient core performance, high plasma stability, protection against transient loss of detachment,...
- ITER is the key facility to test the conventional divertor
- As backup plan, alternatives need to be explored in parallel, in today's and in next step devices^[1]

[1] European Research Roadmap to the Realization of Fusion Energy – 2018

EPFL Alternative divertor configurations and potential benefits

X-Divertor (1980s)

Christian Th

See [Soukhanovskii *et al.*, PPCF 2017] for a historical overview of alternative divertors

EPFLAlternative divertor configurations and potential
benefitsX-Point Target

Plasma

Center

- These concepts potentially allow easier access to detachment and better control of the radiation region
 - Less impurity seeding needed?
 - Wider detachment window, more resilient to transients?
 - Improved compatibility of detachment with core performance?
- They provide a testbed to advance understanding of detachment physics and for model validation

EPFL Alternative divertor configurations and potential benefits

How to facilitated access to low target $T_{\text{e},\text{t}}$ and thus detachment?

2-Point Model prediction (attached conditions, $v_{SOL}^* \gtrsim 15$, heat conduction):

$$T_{e,t} \propto \left(\frac{P_{SOL}}{\lambda_q^u}\right)^{\frac{10}{7}} \cdot \frac{(1 - f_{rad})^2}{L_{\parallel}^{4/7} n_u^2 R_t^2}$$

$$\int \\ \text{Increase field-line length} \qquad \text{Increase radial pos. of target}$$

EPFL Alternative divertor configurations and potential benefits

How to facilitated access to low target $T_{e,t}$ and thus detachment?

2-Point Model prediction (attached conditions, $v_{SOL}^* \gtrsim 15$, heat conduction):

$$T_{e,t} \propto \left(\frac{P_{SOL}}{\lambda_q^u}\right)^{\frac{10}{7}} \cdot \frac{(1 - f_{rad})^2}{L_{\parallel}^{4/7} n_u^2 R_t^2}$$

Wider SOL?

For more details, see

[Theiler et al., Nucl. Fusion 57, 072008 (2017)]

Christian Theile

EPFL The Tokamak à Configuration Variable (TCV), a highly flexible and versatile device

- "Medium-sized" carbon device
 - Major radius R=0.89m
 - Toroidal field $B_t \le 1.5T$
 - Plasma current $I_p \le 1MA$
- Flexible, real-time controllable electron cyclotron heating (~3.5 MW)
- 2MW neutral beam heating
- Unique shaping capabilities
- One of the key facilities of the EUROfusion research program

EPFL The Tokamak à Configuration Variable (TCV), a highly flexible and versatile device

Christian Theile

Swiss Plasma Center

EPFL TCV - an ideal device to explore alternative divertors

1m

Extreme divertor magnetic shaping capabilities

[Theiler et al., Nucl. Fusion 57, 072008 (2017)]

EPFL TCV - an ideal device to explore alternative divertors

Swiss Plasma Center

[Fasoli et al., Nucl. Fusion 60, 016019 (2020)]

EPFL TCV - an ideal device to explore alternative divertors

Plasma Center Goals of the TCV Boundary Group:

Assess benefits of most promising alternative divertors through proof-of-principle experiments, theoretical interpretation, and modelling

11

Christian Theile

- Provide basis for selection of the magnetic configurations to be tested in future devices
- Improve our fundamental understanding of boundary physics and detachment

Our approach

Development of new measurement devices (diagnostics)

Heat exhaust experiments in alternative divertor configurations

Experimental characterization of turbulence in the boundary plasma

Interpretation with and validation of state-ofthe-art codes

EPFL Unprecedented 2D divertor probe measurements ¹³

Swiss

Center

[H. De Oliveira et al., Rev. Sci. Inst. 92, 043547 (2021)] [H. De Oliveira et al., Nucl. Fusion 62, 096028 (2022)]

EPFL Unprecedented 2D divertor probe measurements ¹³

Swiss

Center

[H. De Oliveira et al., Rev. Sci. Inst. 92, 043547 (2021)] [H. De Oliveira et al., Nucl. Fusion 62, 096028 (2022)]

EPFL Unprecedented 2D divertor probe measurements ¹³

Swiss

Center

[H. De Oliveira et al., Rev. Sci. Inst. 92, 043547 (2021)] [H. De Oliveira et al., Nucl. Fusion 62, 096028 (2022)]

Our approach

Development of new measurement devices (diagnostics)

Heat exhaust experiments in alternative divertor configurations

Experimental characterization of turbulence in the boundary plasma

Interpretation with and validation of state-ofthe-art codes

Christian Theiler

EPFL Increased leg length found to substantially reduce detachment threshold and increase window

L-mode density ramps

Plasma Center

[H. Reimerdes et al., Nucl. Fusion 57, 126007 (2017)]

Baffling increases divertor neutral pressure, **EPFL** reducing detachment threshold

L-mode density ramps

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

Swiss Plasma

Center

- Up to 5x increase in divertor p_n with baffles
- Up to a ~30% reduction in detachment threshold^[1,2]

[1] O. Février et al., Nucl. Mater. Energy 27, 100977 (2021) [2] H. Reimerdes et al., Nucl. Fusion 61, 0245002 (2021)]

EPFL Lower target heat fluxes in H-mode X- and X-Point Target

Swiss Plasma Center Christian Theiler

[H. Raj et al., Nucl. Fusion 62, 126035 (2022)]

EPFL Lower target heat fluxes in H-mode X- and X-Point Target

Swiss Plasma Center Benefits achieved without any compromise on the core plasma

[H. Raj et al., Nucl. Fusion 62, 126035 (2022)]

Our approach

Development of new measurement devices (diagnostics)

Heat exhaust experiments in alternative divertor configurations Experimental characterization of turbulence in the boundary plasma

Interpretation with and validation of state-ofthe-art codes

EPFL Suite of Gas Puff Imaging diagnostics for 2D SOL turbulence characterisation

20

Suite of Gas Puff Imaging diagnostics for 2D SOL EPFL turbulence characterisation 0.8 #65360,t=1.21s,framenb=1 150 0.6 LCFS -0.25 100 0.4 -0.3 0.2 50 -0. Z [m] counts 0 -0.2 -0.45 -50 -0.4-0--100 -0.6 -0.6 -0.8 -150 0.85 0.6 0.8 1.2 0.8 0.9 0.95 Swiss R [m] Plasma R [m] Center

[C. Wüthrich et al., Nucl. Fusion 62, 106022 (2022)]

Characterisation of divertor fluctuations

- Different filament types have different flow pattern, yet similar v_r (~400m/s)
- Divertor blobs estimated to contribute significantly to profile broadening^[1]
- Consistent with profile
 broadening measured along leg^[1]

EPFL

Swiss

Plasma

Center

Characterisation of divertor fluctuations

divertor geometry?

[C. Wüthrich et al., Nucl. Fusion 62, 106022 (2022)]

EPFL

Swiss Plasma Center

Our approach

Development of new measurement devices (diagnostics)

Heat exhaust experiments in alternative divertor configurations Experimental characterization of turbulence in the boundary plasma

Interpretation with and validation of state-ofthe-art codes

Christian Theiler

EPFL Interpretation with and validation of edge transport codes

Swiss

Plasma Center

EPFL Interpretation with and validation of edge transport codes

Swiss

Plasma Center

EPFL First full size turbulence simulations of TCV diverted plasma and comparison with the experiment

- Plasma ran at reduced magnetic field to reduce computational costs
- Diagnosed with a wide range of diagnostics

 → 45 different observables; all data is

 publicly available for future code validation
 studies
- Simulations performed with three state-ofthe-art turbulence codes: GBS (EPFL), GRILLIX (MPG), Tokam3X (CEA)

[D. S. Oliveira, T. Body et al., Nucl. Fusion 62, 096001 (2022)]

EPFL First full size turbulence simulations of TCV diverted plasma and comparison with the experiment

GBS simulation

Visualisation by M. Giacomin

EPFL First full size turbulence simulations of TCV diverted ²⁷ plasma and comparison with the experiment

Key results of the detailed exp-sim comparison

Christian Theile

- Generally good sim-exp agreement near the main plasma (profile shapes, fluctuation levels,...)
- Poorer agreement in the divertor volume and near the wall, with significant deviations also among the different codes
- > Number of follow-up studies ongoing to improve agreement, by us and by other groups, on the way towards fully predictive boundary modellling

Concluding remarks

- Alternative divertor magnetic geometries have the potential to substantially alleviate the heat exhaust challenge
- Experiments and extrapolation through validated modelling constitutes a viable path to take the step from proof-ofprinciple demonstration to developing an optimal divertor solution
- TCV is an ideal device for this research
 - High flexibility and accessibility
 - Broad local expertise at SPC (TCV team, theory, modelling, small-scale devices,...)
 - Fully embedded in the EUROfusion program

28

Outlook: Extension of TCV's experimental capabilities

Test new concept of a tightly-baffled, long-legged divertor in next TCV upgrade

EPFL

29

Outlook: Extension of TCV's experimental capabilities

2026: Develop validated physics basis of the concept

2028: Full integration with optimized core solution

EPFL