Breeding deuterium and the ultimate fusion fuel cycle

@JB_Fusion

Outline

J. Ball. Nuclear Fusion **59** 106043 (2019).

- Review fusion fuel cycles
- Present the catalyzed D-D+D fuel cycle
- Explain how it can be accomplished
- Discuss why we might care someday :)

Fusion fuel cycles

[1] Rider. *MIT PhD.* (1995).

Fusion fuel cycles

[1] Rider. *MIT PhD.* (1995).

Only three fusion reactions appear feasible due to bremsstrahlung^[1]

Swiss Plasma Center

Fusion fuel cycles

[1] Rider. *MIT PhD.* (1995).

Only three fusion reactions appear feasible due to bremsstrahlung^[1]

Fusion fuel cycles

Catalyzed D-D:

4 D
$$\rightarrow$$
 ³He + H + H + n + 7.3MeV
D + H \rightarrow ⁴He + n + 17.6MeV
D + ³He \rightarrow ⁴He + H + 18.4MeV

 $6 D \rightarrow 2 ^{4}He + 2 H + 2 n + 43.2MeV$

Catalyzed D-D+D:

4
 6 D → 2 4 He + 2 H + 2 h + 43.2MeV
2 H + 2 h → 2 D + 4.4MeV
of ~0.3 barns

4 D \rightarrow 2 ⁴He + 47.6MeV

• Seems fairly obvious, but has never been pointed out before

ASIDE: Spitzer's perspective from 1954

- Stellarator burning D-T with a lithium breeding blanket
- Included divertors to prevent cool atoms from being sputtered into the plasma
- "Evidently the stellarator tends to be a large device."
 - 5 GW, a major radius of 3 meters, copper coils, 7.5 Tesla
- Noted the importance of high magnetic field

ASIDE: Spitzer's perspective from 1954

B. Assumptions The group considering the problems of a full-scale stellarator has made at the outset the following two important assumptions: (a). Diffusion across the magnetic field by means of turbulence, plasma oscillations, and related phenomena is unimportant, and a magnetic field will confine the charged particles in a plasma, without their hitting the walls, for as long as is needed. There is virtually no evidence either for or against this assumption. Experiments now in progress should indicate how effective confinement by a magnetic field actually is. Once confinement is assumed, the effectiveness of the various heating methods

How to achieve the catalyzed D-D+D fuel cycle?

- 2 D \rightarrow ⁴He + 23.8MeV
- Put the reactor in a tank of water
- In a water-cooled D-D device this would happen inadvertently

How to achieve the catalyzed D-D+D fuel cycle?

2 D \rightarrow ⁴He + 23.8MeV

- Put the reactor in a tank of water
- In a water-cooled D-D device this would happen inadvertently
- Blanket thickness is similar to a tritium breeding blanket

 No need for neutron multiplication: falling somewhat short of DBR=1 just means you need somewhat more deuterium as input

Why do we care? More energy

[1] Tytler, et al. Physica Scripta (2000).

Swige

Plasma

Center

 Breeding deuterium enables any given supply of deuterium to produce as much as 65% more energy:

3 D \rightarrow ⁴He + H + n + 21.6MeV 2 D \rightarrow ⁴He + 23.8MeV

- Deuterium is the dominant fuel source on Earth and in the universe
- Fusing H-1 or He-4 is extremely difficult or requires less abundant isotopes

Primordial Isotopic Abundances

Isotope	Normalized Abundance ^[1]
H-1	0.92
He-4	0.08
H-2	4x10-5
He-3	1x10 ⁻⁵
Li-7	3x10 ⁻¹⁰

Why do we care? Specific energy

• The specific energy of 2 D \rightarrow 4He + 23.8MeV is nearly 6MeV/AMU

Catalyzed D-D+D maximizes specific energy

- Systematic search of the EXFOR database
- Estimate the minimum triple products needed for ignition for <u>all</u> measured reactions
- From this you can construct a fairly rigorous proof
- Less rigorously: stars are big

	¹ H			< -	a (
1			Minimum log	$_{10}(nE_i\tau_E)$	f_c (keV-s	s/m³))	$F(M_{O})$
'H	No Data	² H	(also indicate	d by sha	ding)		L_i (IVIEV)
2	28.6@0.036	23.7@0.035 23.9@0.059	1	_		21.1@0.048	Í
² H	³ He	³ H+ ¹ H ³ He+ ¹ n	³ H ¹² yr	Pro	oducts-	-4He+1n	
	27.5@6.3	21.1@0.048	23.3@0.03		/	17.0, 170	1
∠ ³ H	⁴ He	⁴ He+ ¹ n	⁴ He+2 ¹ n	3	P_{fur} (N	ЛeV) `	\
(12 yr	19.8,0.000	17.6,170 23.1@0.21	11.3,0.59	⊓ e	jus	, F	$P_{P_{i}}^{(N)}$
3He	No Data	⁴ He+ ¹ H	4 He+ 1 H+ 1 n 4 He+ 2 H	⁴ He+2 ¹ H	1	1	fus' I brem
		18.4,6.2	12.1,0.14 14.3,0.060	12.9,0.023	⁺He		
440	-36.3@44 ³ Ho+ ² H	31.7@0.63	30.1@0.21	30.8@0.57 7 _{Be}	-35.7@22		
	-18.4,-0.000	1.5,0.000	2.5,0.000	1.6,0.000	-19.0,-0.000	°Li	
6.	25.1@0.34	24.3@0.43 25.1@0.43 25.2@0.6 25.4@0.36	25.0@0.51	27.2@1.1	31.4@2.4	26.7@1.8]
/ °Li	*He+°He	2"He 'Li+'H 'Be+'n "He+'H+'H	2*He+'n 16.1.0.007	'Be+ ² H	¹⁰ B	'Be+ ⁺ He+'n	⁷ Li
	25.6@2.6	24.2@0.62	24.2@0.39	-33.1@2.8	-33.8@4.5	1.9,0.001	
⁷ Li	2 ⁴ He	2 ⁴ He+ ¹ n	⁹ Be+ ¹ n	⁷ Be+ ³ H	¹⁰ B+ ¹ n	No Data	No Data
(50 day	17.3,0.022	15.1,0.60	10.4,0.52	-0.9,-0.000	-2.8,-0.001		
⁷ Be	⁸ B	No Data	No Data	No Data	No Data	No Data	No Data
	0.1,0.000						
81 :	No Data	24.8@0.3	No Data	No Data	25.2@0.66	No Data	No Data
	NO Data	4.2.0.12	No Data	No Data	B+ n 6.6.0.045	NO Data	NO Data
1 sec					27.2@1.8		
∖°B	No Data	No Data	No Data	No Data	¹¹ C+ ¹ H	No Data	No Data
	24.7@0.3 25.1@0.27	25.4@0.41 25.5@1.5 25.8@0.87 25.9@0.86	25.0@1.1	26.3@1.5	7.4,0.000 25.9@1.3		26.3@8.9
⁹ Be	⁶ Li+ ⁴ He 2 ⁴ He+ ² H	⁷ Li+ ⁴ He ¹⁰ B+ ¹ n 2 ⁴ He+ ³ H ¹⁰ Be+ ¹ H	¹¹ B+ ¹ n	¹¹ C+ ¹ n	¹² C+ ¹ n	No Data	¹² C+ ⁴ He
	2.1,0.12 0.7,0.042	7.2,0.030 4.4,0.022 4.7,0.014 4.6,0.011	9.6,0.084	7.6,0.003	5.7,0.008		23.8,0.001
10 _{Ro}	-34.4@1 ¹⁰ B+ ¹ n	No Data	No Data	No Data	No Data	No Data	No Data
(10 ⁶ vr	-0.2,-0.000		ino Bala	110 2010	no bala	no bata	
100	26.2@0.71	25.6@1.3	26.2@2.3	27.0@3.6	27.7@3.4		
ъВ	1 1 0 004	65.0.016	19.7.0.004	**C+*H 3 2 0 000	¹⁰ N+ ¹ n 1 1 0 000	No Data	No Data
44	24.8@0.15	25.0@1.1	26.9@2	-34.9@7.1	27.5@3.2		26.8@3.5
''B	3 ⁴ He	¹² C+ ¹ H	¹³ C+ ¹ H	¹¹ C+ ³ H	¹⁴ C+ ¹ H	No Data	¹³ C+ ⁴ He+ ¹ n
	8.7,0.048 28.6@0.39	14.5,0.061 29.1@54	13.2,0.001 26.9@0.89	-2.0,-0.000 27.0@2.2	0.8,0.000		10.0,0.001
¹² C	¹³ N	¹³ C+ ¹ H	¹⁴ C+ ¹ H	¹¹ C+ ⁴ He	¹⁶ 0	No Data	¹⁵ N+ ⁴ He
-	1.9,0.000	2.7,0.000	4.6,0.001	1.9,0.000	7.2,0.000		12.4,0.000
¹³ C	31.6@0.12 ¹⁴ N	25.5@1.1 ¹⁴ N+ ¹ n	No Data	No Data	¹⁶ O+ ¹ n	No Data	¹⁵ N+ ⁴ He+ ¹ n
U	7.6,0.000	5.3,0.020	ino Bala	110 2010	2.2,0.001	no bata	7.4,0.000
140	-31.9@1.1	25.3@1.1					
(104 yr	-0.6 -0.003	80.0.032	No Data	No Data	No Data	NO Data	NO Data
	28.2@0.26	26.2@2.4		27.8@5.3	-35.0@7.2		
¹⁴ N	¹⁵ O	¹⁵ O+ ¹ n	No Data	¹³ N+ ⁴ He	¹⁷ F+ ¹ n	No Data	No Data
	25.3@0.94	5.1,0.003 26.8@1.2		10.0,0.000	-4.7,-0.000 30.9@1.3		
¹⁵ N	¹² C+ ⁴ He	¹⁶ N+ ¹ H	No Data	No Data	¹⁹ F	No Data	No Data
	5.0,0.026	0.3,0.001	074040	07.005.0	4.0,0.000	07.504.7	07.000
¹⁶ O	29.9@0.00016 ¹⁷ F	^{26.4} @0.93 ¹⁴ N+ ⁴ He	¹⁸ F+ ¹ n	^{27.3} @5.3	²⁰ Ne	^{27.5} @4.7 ¹⁸ F+ ⁴ He	¹⁹ F+ ⁴ He
Ŭ	0.6,0.000	3.1,0.002	1.3,0.000	2.0,0.000	4.7,0.000	6.1,0.000	9.2,0.000
170	28.3@0.64		27.4@2.3		28.0@3.3		
0	5.6.0.000	No Data	3.5.0.000	No Data	0.6.0.000	No Data	No Data
10	25.4@0.59	26.5@1.2	,		29.7@2.4		
_ [™] 0	¹⁵ N+ ⁴ He	¹⁶ N+ ⁴ He	No Data	No Data	²² Ne	No Data	No Data
2 hr	4.0,0.018 25.3@0.66	4.2,0.002			9.7,0.000		
¹⁸ F	¹⁵ O+ ⁴ He	No Data	No Data	No Data	No Data	No Data	No Data
	2.9,0.020	26.0.91.6		27 6@2 9	32 8 @0 72	20 1@4 2	
¹⁹ F	¹⁶ O+ ⁴ He ²⁰ Ne	²⁰ F+ ¹ H	No Data	¹⁸ F+ ⁴ He	²² Ne+ ¹ H	²⁴ Na+ ¹ H	No Data
'	8.1,0.041 12.8,0.031	4.4,0.000		10.1,0.000	1.7,0.000	13.7,0.000	

13

Why do we care? Interstellar space travel

- Specific *momentum*, rather than energy is key
- D-He-3 is the "conventional" fuel for propulsion because:
 - Only produces charged particles

- <u>Was</u> thought to have the highest specific momentum (7.1% of the speed of light)
- Theoretically, catalyzed D-D+D can achieve 11.3%, but neutrons are hard to direct and hydrogen must be kept onboard to breed deuterium

Important caveat regarding specific energy

- High specific energy is only useful if the mass of the fuel actually matters
- For many applications, all fusion fuels are so energy dense that their mass is negligible
- A half meter thick breeding blanket may weigh 1,000 times more than the deuterium it breeds each year
- Nevertheless, fuel mass would be more significant for large, durable fusion devices with high power densities

Conclusions

- Given the ability to achieve the catalyzed D-D fuel cycle, achieving the catalyzed D-D+D fuel cycle is straightforward
- Such a fuel cycle:
 - enables a given quantity of deuterium to generate as much as 65% more energy
 - has the highest specific energy of any known generation scheme
 - useful where structural material is abundant, but not fuel (e.g. asteroid mining, transmission stations, large construction projects)
 - theoretically enables a spacecraft to have a specific momentum exceeding D-He-3

J. Ball. "Maximizing specific energy by breeding deuterium." *Nuclear Fusion* **59** 106043 (2019).