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• Review fusion fuel cycles


• Present the catalyzed D-D+D fuel cycle


• Explain how it can be accomplished


• Discuss why we might care someday :)

J. Ball. Nuclear Fusion 59 106043 (2019).



Fusion fuel cycles
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D + T → 4He + n + 17.6MeV

D + 3He → 4He + H + 18.4MeV

D-T:

D-3He:

D-D:

D + D
T + H +  4.0MeV

3He + n + 3.3MeV
→
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[1] Rider. MIT PhD. (1995).



Fusion fuel cycles
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D + T → 4He + n + 17.6MeV

D + 3He → 4He + H + 18.4MeV

D-T:

D-3He:

D-D:

[1] Rider. MIT PhD. (1995).

4 D → 3He + T + H + n + 7.3MeV

• Only three fusion reactions appear feasible due to bremsstrahlung[1]
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atmospheric escape

radioactive



Fusion fuel cycles
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D + T → 4He + n + 17.6MeV

D + 3He → 4He + H + 18.4MeV

6Li + n → 4He + T +  4.8MeV

D + 6Li → 2 4He + 22.4MeV

D-T:

D-3He:

D-D:
moon?

• Only three fusion reactions appear feasible due to bremsstrahlung[1]
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[1] Rider. MIT PhD. (1995).

4 D → 3He + T + H + n + 7.3MeV



Fusion fuel cycles
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4 D → 3He + T + H + n + 7.3MeV

D + 3He → 4He + H + 18.4MeV
D + T → 4He + n + 17.6MeV

Catalyzed D-D:

6 D → 2 4He + 2 H + 2 n + 43.2MeV
2 H + 2 n → 2 D + 4.4MeV
4 D → 2 4He + 47.6MeV

Catalyzed D-D+D:

• Seems fairly obvious, but has never been pointed out before

6 D → 2 4He + 2 H + 2 n + 43.2MeV

4
thermal cross-section

of ~0.3 barns

2 D → 4He + 23.8MeV



ASIDE: Spitzer’s perspective from 1954
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• Stellarator burning D-T with a 
lithium breeding blanket


• Included divertors to prevent cool 
atoms from being sputtered into 
the plasma


• “Evidently the stellarator tends to 
be a large device.”


• 5 GW, a major radius of 3 
meters, copper coils, 7.5 Tesla


• Noted the importance of high 
magnetic field



ASIDE: Spitzer’s perspective from 1954

8
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How to achieve the catalyzed D-D+D fuel cycle?
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• Put the reactor in a tank of water

• In a water-cooled D-D device this 
would happen inadvertently

2 D → 4He + 23.8MeV
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How to achieve the catalyzed D-D+D fuel cycle?

• Put the reactor in a tank of water


• In a water-cooled D-D device this 
would happen inadvertently


• Blanket thickness is similar to a 
tritium breeding blanket

2 D → 4He + 23.8MeV
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• No need for neutron multiplication: falling somewhat short of DBR=1 just 
means you need somewhat more deuterium as input
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Why do we care?

2 D → 4He + 23.8MeV

• Breeding deuterium enables any given supply of deuterium to produce as 
much as 65% more energy:

• Deuterium is the dominant fuel 
source on Earth and in the 
universe


• Fusing H-1 or He-4 is extremely 
difficult or requires less abundant 
isotopes

Isotope Normalized Abundance
H-1 0.92
He-4 0.08
H-2 4x10-5

He-3 1x10-5

Li-7 3x10-10

Primordial Isotopic Abundances
[1]

[1] Tytler, et al. Physica Scripta (2000).

3 D → 4He + H + n + 21.6MeV

More energy



12

Why do we care? Specific energy

• The specific energy of                                               is nearly2 D → 4He + 23.8MeV 6MeV/AMU
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Catalyzed D-D+D maximizes specific energy

• Systematic search of the EXFOR 
database

• Estimate the minimum triple 
products needed for ignition for 
all measured reactions

• From this you can construct a 
fairly rigorous proof

• Less rigorously: stars are big
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Why do we care? Interstellar space travel

• Specific momentum, 
rather than energy is key


• D-He-3 is the 
“conventional” fuel for 
propulsion because:


• Only produces 
charged particles

Charged
particles

Neutron
pusher/blanket

SpacecraftConfinement
scheme

Magnetic
nozzle

Neutrons

Electrical
generator

Waste heat
radiator

Ion
acceleration

grids

• Was thought to have the highest specific momentum (7.1% of the speed 
of light)


• Theoretically, catalyzed D-D+D can achieve 11.3%, but neutrons are hard to 
direct and hydrogen must be kept onboard to breed deuterium
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Important caveat regarding specific energy

• High specific energy is only useful if the 
mass of the fuel actually matters


• For many applications, all fusion fuels 
are so energy dense that their mass is 
negligible


• A half meter thick breeding blanket 
may weigh 1,000 times more than the 
deuterium it breeds each year


• Nevertheless, fuel mass would be more 
significant for large, durable fusion 
devices with high power densities
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Conclusions

• Given the ability to achieve the catalyzed D-D fuel cycle, achieving the catalyzed 
D-D+D fuel cycle is straightforward


• Such a fuel cycle:


• enables a given quantity of deuterium to generate as much as 65% more 
energy


• has the highest specific energy of any known generation scheme


• useful where structural material is abundant, but not fuel (e.g. asteroid 
mining, transmission stations, large construction projects)


• theoretically enables a spacecraft to have a specific momentum exceeding 
D-He-3



Questions?

J. Ball. “Maximizing specific energy by breeding deuterium.” 
Nuclear Fusion 59 106043 (2019).


