Skip to main content

Materials

Book

ITER Physics

C. Wendell Horton Jr., Sadruddin Benkadda
The promise of a vast and clean source of thermal power drove physics research for over fifty years and has finally come to collimation with the international consortium led by the European Union and Japan, with an agreement from seven countries to build a definitive test of fusion power in ITER. It happened because scientists since the Manhattan project have envisioned controlled nuclear fusion in obtaining energy with no carbon dioxide emissions and no toxic nuclear waste products. This large toroidal magnetic confinement ITER machine is described from confinement process to advanced physics of plasma-wall interactions, where pulses erupt from core plasma blistering the machine walls. Emissions from the walls reduce the core temperature which must remain ten times hotter than the 15 million degree core solar temperature to maintain ITER fusion power. The huge temperature gradient from core to wall that drives intense plasma turbulence is described in detail. Also explained are the methods designed to limit the growth of small magnetic islands, the growth of edge localized plasma plumes and the solid state physics limits of the stainless steel walls of the confinement vessel from the burning plasma. Designs of the wall coatings and the special "exhaust pipe" for spent hot plasma are provided in two chapters. And the issues associated with high-energy neutrons — about 10 times higher than in fission reactions — and how they are managed in ITER, are detailed.Readership: For nuclear fusion and ITER specialists.
Book

Fusion Energy and Power: Applications, Technologies and Challenges

Lionel Romero
The worldwide fusion community continues its research efforts on magnetic confinement as the most promising, long-term, environmentally-friendly power source. Despite the ongoing fusion research efforts in many countries, the technology and materials-related challenges remain formidable and will hinder and delay the first fusion demonstration plant for decades. In this book, the current understanding of technology-related challenges facing fusion research are explored. Advances in fusion neutronics integral experiments in the benchmark mock assemblies for the blanket of a fusion-fission hybrid energy reactor are also described in brief. Cold Fusion (CF) is examined as well, with the authors' argument backed by evidence that cold fusion (CF) can become more understandable. The final chapter details the Force Free Helical Reactor (FFHR) and its implications on fusion power. Contents:  Overview of Fusion Neutronics Experiments for Blanket of a Hybrid Energy Reactor  (Rong Liu, Institute of Nuclear Physics and Chemistry, Key Laboratory of Neutron Physics, China Academy of Engineering Physics, Mianyang, Sichuan, China)  Technology-Related Challenges Facing Fusion Power Plants  (Laila A. El-Guebaly, Lorenzo V. Boccaccini, Richard J. Kurtz, and Lester M. Waganer, University of Wisconsin, Fusion Technology Institute, Madison, WI, USA, and others)  Old Math and Renewed Physics: Keys to Engineering Cold Fusion  (Cynthia Kolb Whitney, Editor, Galilean Electrodynamics)  Control Concept for the High Density and Low Temperature Ignition in the FFHR Helical Reactor  (O. Mitarai, A. Sagara and R. Sakamoto, Kumamoto Liberal Arts Education Center, Tokai University, Toroku, Higashi-ku, Kumamoto, Japan, and others)