Skip to main content

Impact of boronization on the ITER first wall performance using Magnum-PSI

Introduction

ITER has recently decided to replace the beryllium (Be) First Wall with tungsten(W). In order to get efficient start-up by gettering impurities and to avoid excessive W core contamination this wall will be regularly coated with a layer of boron (B) by glow-discharge boronization. This boron will be eroded and co-deposit with hydrogen isotopes (D and T) in deposition regions of the machine. As a result several open questions exist regarding the safe operation of ITER in such a scenario, for example regarding the trapping of the scarce T inventory, including:

  • What is the expected T/B co-deposition ratio as a function of B and T fluxes, and surface temperature?
  • At what temperature will T be removed from T/B co-deposits?
  • What is the T retention rate in extant B layers?
  • What is the sputtering rate of different depositedB layers with differing T and O content?
  • What is the O gettering capability of the B layer?
  • What role does oxygen play in theT/B co-deposition, sputtering, trapping and de-trapping?
  • What is the physical stability of (T+)B layers – are flakes or dust readily formed? How well does it adhere to the deposition surface?
  • Can T beremoved via isotope exchange? On what timescale and at what temperature? With what flux of D ions/radicals/molecules? As a function of layer thickness?

This project aims to tackle some of these questions, particularly focusing on the questions related tritium retention and safety. For this we use D as a proxy for T.

Your Project

As a first step deposition methods for use in Magnum-PSI and/or UPP need to be developed. B readily oxidises in air which strongly alters its gettering and other physical properties so this should be done in-situ. Possible options to be explored include:

  • Upstream sputtering of Btargets leading to downstream co-deposition with D
  • Injection of diborane gas into the plasma stream
  • Pulsed laser deposition of boron onto the target surface
  • Boron powder dropping into the plasma with downstream deposition
  • Evaporative atomic beam source (molecular beam epitaxy (MBE) effusion cells)

Subsequently the boron layer thickness and D content should be assessed using Nuclear Reaction Analysis. Different conditions should be determined such as substrate temperature, B deposition rate and ion energy. D trappingcan also be determined using Thermal Desorption Spectroscopy. From this an empirical relationship similar to that developed for co-deposition of Be and D can be determined [1]. A post-mortem analysis of the layers by e.g. SEM and nano-indentation can give information on their properties.

[1]. G. D. Temmerman, M. J. Baldwin,R. P. Doerner, D. Nishijima, and K. Schmid,“An empirical scalingfor deuterium retention in co-deposited beryllium layers,” Nucl. Fusion, vol. 48, no. 7, p. 075008, Jun. 2008, doi: 10.1088/0029-5515/48/7/075008.

What we offer

  • Access to top class facilities and instrumentation at DIFFER like Magnum-PSI and the Ion Beam Facility
  • Supervision and guidance that aims to support you while letting you be in charge of the project
  • A PMI team of enthusiastic and knowledgeable students around you
  • Limitless free coffee!

Impact of boronization on the ITER first wall performance using Magnum-PSI

Position Type
Position Type
Master internship
Host institute type
Host institute type
Research Institute
Host institute
Host institute
Dutch Institute for Fundamental Energy Research (DIFFER), The Netherlands
Location
Location
Eindhoven, Netherlands
Format
Format
Requires physical presence
Starting Date
Starting Date
No Specific Start Date
Candidate level
Candidate level
Master (in progress)
Compensation
Compensation
To be determined
Contact person
Contact person
Nicolette Ketelaar
Contact person email
Contact person email
External Link
Location